Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372329

RESUMO

Driver drowsiness is a major cause of fatal accidents throughout the world. Recently, some studies have investigated steering wheel grip force-based alternative methods for detecting driver drowsiness. In this study, a driver drowsiness detection system was developed by investigating the electromyography (EMG) signal of the muscles involved in steering wheel grip during driving. The EMG signal was measured from the forearm position of the driver during a one-hour interactive driving task. Additionally, the participant's drowsiness level was also measured to investigate the relationship between muscle activity and driver's drowsiness level. Frequency domain analysis was performed using the short-time Fourier transform (STFT) and spectrogram to assess the frequency response of the resultant signal. An EMG signal magnitude-based driver drowsiness detection and alertness algorithm is also proposed. The algorithm detects weak muscle activity by detecting the fall in EMG signal magnitude due to an increase in driver drowsiness. The previously presented microneedle electrode (MNE) was used to acquire the EMG signal and compared with the signal obtained using silver-silver chloride (Ag/AgCl) wet electrodes. The results indicated that during the driving task, participants' drowsiness level increased while the activity of the muscles involved in steering wheel grip decreased concurrently over time. Frequency domain analysis showed that the frequency components shifted from the high to low-frequency spectrum during the one-hour driving task. The proposed algorithm showed good performance for the detection of low muscle activity in real time. MNE showed highly comparable results with dry Ag/AgCl electrodes, which confirm its use for EMG signal monitoring. The overall results indicate that the presented method has good potential to be used as a driver's drowsiness detection and alertness system.


Assuntos
Condução de Veículo , Dispositivos Eletrônicos Vestíveis , Eletrodos , Eletromiografia , Força da Mão , Humanos , Vigília
2.
Sensors (Basel) ; 20(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932862

RESUMO

Microneedle array electrodes (MNE) showed immense potential for the sensitive monitoring of the bioelectric signals by penetrating the stratum corneum with high electrical impedance. In this paper, we introduce a rigid parylene coated microneedle electrode array and portable electrocardiography (ECG) circuit for monitoring of ECG reducing the motion artifacts. The developed MNE showed stability and durability for dynamic and long-term ECG monitoring in comparison to the typical silver-silver chloride (Ag/AgCl) wet electrodes. The microneedles showed no mechanical failure under the compression force up-to 16 N, but successful penetration of skin tissue with a low insertion force of 5 N. The electrical characteristics of the fabricated MNE were characterized by impedance spectroscopy with equivalent circuit model. The designed wearable wireless ECG monitoring device with MNE proved feasibility of the ECG recording which reduces the noise of movement artifacts during dynamic behaviors.


Assuntos
Eletrocardiografia , Polímeros/química , Dispositivos Eletrônicos Vestíveis , Xilenos/química , Impedância Elétrica , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...